
421 

Acta Cryst. (1997). A53, 421-425 

Modeling Thermal Diffuse Scattering in Electron Diffraction 
Involving Higher-Order Laue Zones 

t .  J. ALLEN, a* T.  W.  JOSEFSSON," G. LEHMPFUHL b AND Y. UCHIDA h 

aSchool of Physics, University of Melbourne, Parkville, Victoria 3052, Australia, and b Fritz-Haber-lnstitut der Max- 
Planck-Gesellschaft, Faradayweg 4-6, D- 14195 Berlin, Germany. E-mail: lja @physics. unimelb, edu.au 

(Received 6 November 1996; accepted 24 February /997) 

Abstract 
The importance of thermal diffuse scattering (TDS) in 
electron diffraction contrast is well known. Experiments 
involving higher-order Laue-zone (HOLZ) reflections 
are highly sensitive to variations in the TDS form 
factors. The Einstein model for TDS gives excellent 
agreement with experimental convergent-beam electron 
diffraction (CBED) patterns containing HOLZ lines pro- 
vided that the absorption coefficients are not calculated 
using perturbative methods but instead are evaluated 
exactly. This is in contrast to absorption potentials 
determined from experiments sensitive to beams in the 
zero-order Laue zone (ZOLZ) only, the use of which 
can be inconsistent with data sensitive to HOLZ beams. 
Here the features of the Einstein model important for 
the correct interpretation of the experimental data are 
analyzed and why it is inadequate to treat HOLZ beams 
perturbatively is discussed. 

I. Introduction 
Even at low temperatures, the effects of thermal diffuse 
scattering (TDS) on electron diffraction contrast are sig- 
nificant. Quantitative analytical work, such as accurate 
crystal structure-factor determination and microanalyti- 
cal techniques require accurate modeling of TDS. TDS 
is well understood from a theoretical point of view 
and has been discussed in detail elsewhere (Yoshioka 
& Kainuma, 1962; Hall, 1965; Whelan, 1965; Hall & 
Hirsch, 1968; Humphreys & Hirsch, 1968; Allen & 
Rossouw, 1989; Bird & King, 1990; Wang, 1995). In 
particular, the Einstein model for TDS, which assumes 
independently oscillating atoms and takes into account 
phonon modes for which the frequency is independent of 
wave vector, is well known to result in form factors that 
have been used to model TDS and diffraction contrast 
successfully (Allen & Rossouw, 1990; Rossouw, Miller, 
Drennan & Allen, 1990; Allen, Rossouw & Wright, 
1992). The effect of TDS can be well simulated by 
the Einstein model for both low and high scattering an- 
gles (Rossouw & Hampikian, 1993; Rossouw & Miller, 
1993), where multiphonon contributions are important. 
The Einstein model provides a good average description 
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of the TDS intensity as a function of scattering angle 
(Hall, 1965; Hall & Hirsch, 1965; Wang, 1995). 

Recently, Lehmpfuhl, Krahl & Uchida (1995) have 
taken experimental energy-filtered convergent-beam 
electron diffraction (CBED) patterns near the [111], 
[110] and [100] zone axes for Si at room temperature. 
Use of the Voss, Lehmpfuhl & Smith (1980) absorption 
model for TDS to simulate these zero-beam experimental 
patterns results in the appearance of anomalous effects 
in the first-order Laue-zone (FOLZ) lines occurring 
in the theoretical CBED pattern. To eliminate these 
anomalies, different Debye-Waller factors were used for 
different zone axes and the experimental results were 
then interpreted as possible evidence for anisotropy in 
the Debye-Waller factor for Si. 

However, a subsequent calculation (Allen & Josef- 
sson, 1996) using the Einstein model showed that the 
intensity distribution in higher-order Laue-zone (HOLZ) 
patterns can be well simulated when using the Einstein 
model for TDS as a basis for the absorption potential. 
This potential must be used in an exact solution of 
the fundamental equations of the dynamical diffraction 
theory, which involves the solution of an eigenvalue 
problem for a non-Hermitian matrix (Allen & Rossouw, 
1989). Here, we want to describe and to analyze the 
subtle but important issues that are essential for a correct 
interpretation of the experimental HOLZ patterns, since 
their simulation is very sensitive to variations in the TDS 
form factors. 

2. TDS in HOLZ patterns 
An absorption potential for TDS in silicon (for 100 keV 
electrons and room temperature) was determined by 
Voss, Lehmpfuhl & Smith (1980). Low-indexed struc- 

real ture factors Vg ' and TDS absorption form factors V~ m 
were determined for Si by fitting to an energy-unfiltered 
CBED pattern for { 111 } systematic-row interactions in 
the ZOLZ up to a magnitude of about g = 6 [in 
units of the beam index numbers g = (h 2 + k2 q_ 12)1/2]. 
We note that HOLZ reflections have magnitude roughly 
twice this value. The crystal was oriented so that (1 i i 
) was in the exact Bragg orientation. A densitometer 
line scan was taken along the length of the systematic 

Acta Cr3'stallographica Section A 
ISSN 0108-7673 © 1997 



422 MODELING THERMAL DIFFUSE SCATrERING IN ELECTRON DIFFRACTION 

row CBED discs. After a background subtraction had 
been performed to remove inelastic plasmon scattered 
electrons, the resulting line scan was used to fit a 
theoretical calculated intensity distribution. The TDS 
scattering form factors V 'm were expressed in param- 

• g . 

etrized parabolic form for convemence, 

Vgm ._ •, real / • vg ~ g -  Bg:). (1) 

The experimentally determined densitometer trace was 
reproduced accurately for certain values of the elastic 
structure factors and for the values A = 0.004 and B = 
0.0003 in (1). 

In Fig. l(a), we compare the ratio v i m / v  real obtained 
by Voss, Lehmpfuhl & Smith (1980~ forgSi at room 
temperature and at 100 keV with those calculated from 
the Einstein model using the elastic scattering factors of 
Waasmaier & Kirfel (1995). This parametrization is only 
valid for g > 0. The mean absorption potential Vtl m is 
introduced separately into the calculations, as described 
by Voss, Lehmpfuhl & Smith (1980). We note that less- 
accurate elastic form-factor parametrizations (Doyle & 
Turner, 1968; Rez, Rez & Grant, 1994) give almost 
identical results to those obtained using the Waasmaier 
& Kirfel (1995) parametrization. The particular absorp- 
tion parameters A and B obtained by Voss, Lehmpfuhl 
& Smith (1980) are significantly different from those 
obtained from a parabolic fit to the Einstein model, 
i.e. A = 0.0146 and B - 0.00061 (see Fig. la also). 
Reducing V im calculated from the Einstein model by a 
factor of 0.g25 gives approximate agreement with the 
Voss et al. absorptive potential for small g but not for 
large g. This can be seen in Fig. l(b) where we show 

m r e  a l  the ratio V / V  " using exactly 0 25 × Einstein TDS 
g 

scattering ~actors (solid line), the Voss et al. model 
[the same as shown in Fig. l(a), dotted line] and a 
parabolic fit to 0.25 x Einstein model with A = 0.003 65 
and B = 0.000 1525 (broken line). It is important to 
note that these parametrizations are only valid for this 
particular temperature and incident energy. Furthermore, 
simple parametrizations, such as a parabolic form, are 
not always justified - see Figs. 3 and 8 in Allen 
& Rossouw (1990). However, the absorptive potential 
in the Einstein model is easily calculated from first 
principles for any temperature and accelerating voltage 
(Allen & Rossouw, 1989; Bird & King, 1990). 

It was noted by Lehmpfuhl, Krahl & Uchida (1995) 
that, in their simulation of the experimental CBED pat- 
tems (including HOLZ lines), no discernible difference 
was obtained whether commonly employed perturbative 
techniques or an exact scheme (Allen & Rossouw, 1989) 
was used to calculate the absorption coefficients. This 
is not the case when using the Einstein model. In 
Fig. 2, we show one quarter of the zero-beam CBED 
pattern, calculated using various assumptions, near the 
[100] zone axis for 99.177keV electrons incident on 
an Si crystal of thickness 2720 A with a Debye-Waller 

factor of D = 0.46 A 2. All the results were obtained 
using a 93-beam Bloch-wave calculation, with different 
models for the absorption potential and with the resulting 
absorption coefficients calculated either using the exact 
scheme or in the perturbative approximation. The results 
in Figs. 2(a) and (b) were obtained with Einstein model 
TDS form factors, as discussed in Allen & Josefsson 
(1996). In Fig. 2(a), the absorption coefficients were 
calculated using the exact scheme, and in Fig. 2(b) in the 
perturbative approximation. The intensity in the HOLZ 
lines is substantially different in the two cases. The 
exact scheme results agree very well with experiment 
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Fig. I. The ratio of TDS to elastic scattering form factors v~m/v~ ea|. 
(a) The results obtained by Voss, Lehmpfuh] & Smith (1980) for 
Si at room temperature and at 100 keV (dotted line) calculated 
from equation ( I )  with A = 0.004 and B = 0.0003. The same 
ratio calculated from the Einstein model using the elastic scattering 
factors of Waasmaier & Kid'el (1995) (solid line). A parabolic fit 
to the Einstein model with A = 0.0146 and B = 0.00061 (dashed 
line). (b) The Voss et aL model (dotted line) compared to the 0.25 
Einstein model (solid line) and a parabolic fit to the 0.25 Einstein 
model with A = 0.00365 and B = 0.000152 (dashed line). 
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[see Fig. 2(a) of Lehmpfuhl, Krahl & Uchida (1995)] 
while the perturbative method shows anomalous effects 
similar to those obtained using the Voss, Lehmpfuhl & 
Smith (1980) TDS potential [see Figs. 5(b) and (c) in 
Lehmpfuhl, Krahl & Uchida (1995)]. Similar results are 
obtained when using the parabolic fit (see Fig. la) to 
the Einstein model. This can be seen in Figs. 2(c) and 

(d), where the absorption coefficients are calculated in 
the exact scheme and in the perturbative approximation, 
respectively. The effect of using a perturbative approach 
is to underestimate the contribution of the FOLZ beams. 
The Voss, Lehmpfuhl & Smith (1980) TDS potential 
severely underestimates the absorption relative to the 
Einstein model at large reflection angles (see Fig. 1). 

(a) 

,U' 

(b) 

(c) (a) 

(e) ( f )  

~) (h) 

Fig. 2. The zero-beam CBED pattern near the [100] 
zone axis for 99.177 keV electrons incident on an 
Si crystal of thickness 2720/~. The results were 
obtained from a 93-beam Bloch-wave calculation, 
with TDS absorption included by: (a) an exact 
calculation using the Einstein model; (b) a pertur- 
bative calculation using the Einstein model; (c) an 
exact calculation using the parametfized Einstein 
model; (d) a perturbative calculation using the pa- 
rametrized Einstein model; (e) an exact calculation 
using the 0.25 Einstein model; ( f )  a perturbative 
calculation using the 0.25 Einstein model; (g) an 
exact calculation using the parametrized 0.25 Ein- 
stein model; (h) a perturbative calculation using 
the parametrized 0.25 Einstein model. 
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This is why, as pointed out by Lehmpfuhl, Krahl & 
Uchida (1995), the use of a perturbative or exact scheme 
had very little effect on their simulated CBED patterns. 

Because reducing the Einstein potential by a factor of 
0.25 gives approximate agreement with the Voss et al. 

absorptive potential for small g, in Fig. 2(e) we show 
the CBED intensity obtained using exactly one quarter 
of the Einstein potential (with the absorption coefficients 
calculated exactly) and in Fig. 2 ( f )  with the absorption 
coefficients calculated perturbatively. Similar results are 
obtained using the parabolic fit to the 0.25 Einstein 
model shown in Fig. l(b). This can be seen in Figs. 
2(g) and (h) where the parabolic fit to the 0.25 Einstein 
model is used in an exact [Fig. 2(g)] and perturbative 
[Fig. 2(h)] calculation of the absorption coefficients. It 
is interesting that in using this reduced potential a similar 
diffraction contrast is obtained to the full Einstein model 
[cf. Figs. 2(a) and (e)]. Although the 0.25 Einstein model 

does not change diffraction contrast greatly in this case 
(when compared to the actual Einstein model), this will 
not in general be true, and in any case the absolute 
intensity will be very different. The CBED intensity 
patterns shown in Fig. 2 are not absolute intensities but 
are instead normalized to their own individual maximum 
intensity. 

In order to avoid intensity artefacts in the simulation 
of a HOLZ pattern, the functional dependence of the 
absorption potential on g is more important than the 
magnitude, at least in this case. Using the reduced 
Einstein model in a perturbative calculation also gives 
artefacts in the intensity [see Fig. 2(f)]  but not as 
pronounced as those for the full Einstein model shown 
in Fig. 2(b) (a perturbative treatment is expected to 
be better for the weaker potential). However, this is 
consistent with the fact that in this case a reasonable 
agreement with the experimental results could be ob- 
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Fig. 3. (a) The CBED intensity calculated in the exact scheme (solid 
line) and perturbatively (dashed line) along the line crossing the 
HOLZ line shown in Figs. 2(a) (indicated by the arrow) and (b). 
This line corresponds to the tangential component kt of the incident 
beam varying as kt = x(01 i)+0.125(011) with x varying from 0 to 
0.06. Examples of two significant absorption coefficients belonging 
to excited Bloch waves are shown in (b) and (c) for the same 
orientations as in (a). The results are calculated using the exact 
scheme (solid line) and in the often used perturbative approximation 
(dashed line). 
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tained by assuming that the absorption due to TDS is 
zero (Lehmpfuhl, Krahl & Uchida, 1995). Therefore, one 
cannot say that, in general, agreement with experimental 
HOLZ patterns will be maintained by reducing the 
strength of the Einstein model, particularly if TDS sub- 
stantially changes diffraction contrast (Rossouw, Miller, 
Drennan & Allen, 1990). Anomalous absorption due 
to TDS and the associated modification of diffraction 
contrast is an essential part of the physics, especially 
for thick crystals (thousands of ~ngstrrms). While in 
the case considered here the diffraction contrast does 
not change substantially, there are subtle changes in 
contrast. Careful comparison of [100] calculations with 
experimental results [see Fig. 2(a) of Lehmpfuhl, Krahl 
& Uchida (1995)] shows better agreement with the 
inclusion of TDS. 

If one considers effects only due to the ZOLZ (as 
in Voss, Lehmpfuhl & Smith 1980), then one cannot 
discriminate between the 0.25 Einstein and the Voss et 
al. model, since both are in reasonable agreement for 
all values of g in the ZOLZ (i.e. g < 7). Only when 
simulating HOLZ patterns (where values with g > 7 
are included) is the absorption model crucial, and here 
the Voss et al. model fails to reproduce the experimental 
intensity while the Einstein model is successful. 

In Fig. 3(a), we show the CBED intensity calculated 
in the exact scheme (using the Einstein model for 
absorption) along the line indicated by the arrow in 
Fig. 2(a). The results are compared with the intensity 
calculated in the perturbative approximation [i.e. along 
the line shown in Fig. 2(b)]. This line corresponds 
to the tangential component k t of the incident beam 
varying as k t -- x(011) + 0.125(011) withx varying from 
0 to 0.06. The increase in intensity observed as a peak 
near the orientation x - 0.02 (close to the HOLZ 
line at approximately x = 0.03) in the perturbative 
approximation is due to an underestimation of the TDS 
absorption coefficients calculated perturbatively at these 
orientations. The standard perturbative techniques result 
in incorrect absorption coefficients and Bloch-wave ex- 
citation amplitudes while the elastic coefficients remain 
almost unchanged. Of the 93 Bloch waves used in this 
calculation, approximately 15 had non-zero excitation 
amplitudes and absorption coefficients that differed at 
times by up to 200% when calculated perturbatively or 
exactly. In Figs. 3(b) and (c), we show two of these 
absorption coefficients (both belonging to excited Bloch 
waves) calculated in the exact scheme (solid line) and 
in the perturbative approximation (dashed line) for the 
same orientations as the intensity pattern in Fig. 3(a). 
The increase in intensity of the perturbative versus the 
exact calculations near the HOLZ lines in Fig. 3(a) 
(at orientations of x = 0.02 and x - 0.03) is due 
in part to the decrease of the absorption coefficients 
calculated in the perturbative approximation at these 
orientations, as seen in Figs. 3(b) and (c). Clearly, for 
certain orientations, the perturbative approximation is 

entirely inadequate in calculating the absorption coef- 
ficients. 

3. Conclusions 

We reiterate that the effects of even relatively small 
variations in absorption can be significant, particularly 
where HOLZ reflections are involved. The Einstein 
model has repeatedly been shown to be highly suc- 
cessful and atomic TDS form factors calculated in the 
Einstein model are readily available either in simple 
Doyle-Turner (Gaussian) parametrized form (Dudarev, 
Peng & Whelan 1995), or in the form of computer 
subroutines (i.e. Bird & King 1990). We caution that care 
must be taken when making use of TDS form factors 
(whether experimentally determined or otherwise) that 
are substantially at variance with the readily available 
or easily calculated Einstein model. Furthermore, an 
exact (not perturbative) treatment of TDS absorption 
coefficients is required to avoid artificial anomalous 
HOLZ intensity effects. 
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